Animal/Hide Washing or Dehairing

<table>
<thead>
<tr>
<th>INTERVENTION SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Intervention type</td>
</tr>
<tr>
<td>Treatment time</td>
</tr>
<tr>
<td>Regulations</td>
</tr>
<tr>
<td>Effectiveness</td>
</tr>
<tr>
<td>Likely Cost</td>
</tr>
<tr>
<td>Value for money</td>
</tr>
<tr>
<td>Plant or process changes</td>
</tr>
<tr>
<td>Environmental impact</td>
</tr>
<tr>
<td>OH&S issues</td>
</tr>
<tr>
<td>Advantages</td>
</tr>
<tr>
<td>Disadvantages or Limitations</td>
</tr>
</tbody>
</table>
Animal/Hide Washing or Dehairing

Chemicals can be used, as part of a wash step, to clean hides and fleeces before hide removal with the aim of lowering microbial and/or visible contamination. Compounds such as sodium hydroxide, trisodium phosphate, acidified chlorine (sodium hypochlorite with acetic acid), and phosphoric acid have been evaluated for this purpose. These chemicals do not have a neutral pH, and thus a water rinse is needed to remove the residual chemical and to minimise exposure to risks for plant personnel. Other combinations of chemicals can be used to dehair bodies prior to skinning.

Hide or Fleece Washing

In cattle, the contact of the carcass surface with faecally soiled hide that had been washed prior to slaughter can result in a microbial load on the carcass surface similar to that resulting from contact with fresh faeces (Bell 1997). Van Donkersgoed et al. (1997) found that although slowing line speed or shaving off dag could reduce carcass microbial contamination, this reduction was not statistically significant, but on a slow line, wet hides seemed to give slight increases in carcass coliform or \textit{E. coli} counts. Strict sanitary dressing procedures including a cold water wash of cattle the day before slaughter and pre-chill decontamination of the resultant carcasses can result in reduced mean aerobic plate count and improved shelf life when compared to conventionally dressed cattle with no preslaughter wash (Dixon et al. 1991), but with pre-slaughter washing alone, there may be no statistically significant reduction in carcass contamination (Byrne et al. 2000). These authors found that a three-minute wash of dried faecal matter on cattle rumps reduced the levels of marker organism present, but had no statistically significant reduction in the microbial load of the resultant carcass. Washing of cattle hides, using cetylpiridinium chloride, has resulted in improved carcass microbiology, and reduced incidences of \textit{E. coli} O157 (Bosilevac et al. 2004).

Pre-slaughter washing of sheep is widely used in New Zealand (Biss and Hathaway 1995), particularly in groups of sheep that have extensive faecal staining or smearing of the pelt, faecal material collected around the hind legs and/or excessive accumulations of mud or dust in the fleece. The pre-slaughter wash described by Biss and Hathaway involved an initial cold water (10°C) shower wash, with water directed up from floor level to the bellies, as well as from above. Clean lambs were showered for 2 minutes, and dirty lambs for up to 10 minutes. The wet lambs were then immediately swum for approximately 1 minute in a trough of counter flow cold water, which was emptied and cleaned daily. After this, the lambs were allowed to drip-dry.
overnight. When lambs have been washed prior to slaughter, less visible contamination can be seen on the carcasses (Petersen 1978), but the microbiological counts can be up to 0.3 log higher than on lambs that have not been washed (Biss and Hathaway 1996a). The detrimental effect of the pre-slaughter wash was found to be greater on carcasses derived from woolly lambs than from shorn lambs. Numerous swims could also have an adverse effect on sheep welfare – the muscle pH increases with greater number of swims, and the duration of the post-swim rest phase did not improve this (Petersen 1983), and there is a highly significant increase in the prevalence of bruising in lambs that have been swum as compared with unwashed lambs (Petersen 1978). Wet animals moving from the bath to the drying pens were seen to slip and fall, or run into rails and gates because of the slippery surface of wet gratings underfoot. Sheep with excessive accumulations of faecal material around the anus generally undergo shearing of the affected perineal area (“crutching”) prior to slaughter, but this has not resulted in significant improvements in carcass microbiology (Roberts 1980). A New Zealand based company, Klenzion, has developed a system for washing sheep prior to slaughter, using quaternary ammonium compounds marketed as Agwash™ and Agsan™. Application for approval has been submitted to the Australian regulatory authority.

Chemical Dehairing

The dehairing process after stunning and sticking results in visually cleaner carcasses and reduces the requirement for trimming faecal contamination. It occurs in a wash cabinet that uses a succession of chemical and water combinations. Scientific studies have shown variable results: Schnell et al. (1995) used a chemical solution of 10% sodium sulphide, water washes, and 3% hydrogen peroxide, in an in-plant commercial system, but found that this combination did not significantly reduce the naturally occurring bacterial load (total aerobic bacteria and E. coli) on carcasses; Castillo et al. (1998) used a similar chemical dehairing process but on small hide pieces (not applied to full carcasses) under controlled laboratory conditions, and found a significant (5 log) reduction in the counts of aerobic bacteria, coliforms and E. coli, as well as artificially inoculated Salmonella Typhimurium, and E. coli O157:H7; Nou et al. (2003) ultimately demonstrated that chemical dehairing as part of a commercial operation involving other interventions, did contribute to a reduction in incidence of hide-to-carcass contamination with pathogens such as E. coli O157:H7.
The implementation of chemical dehairing does have its draw-backs and may not be feasible for industry. A cabinet would need to be incorporated after stunning and shackling of the carcass and this would require an up-front capital investment. A current USA patented in-plant system would require a closed cabinet with an expected dwell time of almost 6 minutes (Schnell et al. 1995). There would also be issues dealing with waste both of the sodium sulphide generated (which could possibly be re-used), and also processing of the hydrolysed hair, which could be used as fertiliser. The chemical would contact exposed tissue at the stick wound, so the area would have to be trimmed off, or the animal subjected to stun-kill, and bled after dehairing. This kind of technology may also be relevant for dehairing goats for ‘skin-on’ export markets; however, there is no published scientific literature supporting this possibility.

An alternative to dehairing all animals is to segregate soiled animals and pay more attention to these particular animals by reducing the line speed while processing and increasing the number of personnel attending these animals.

Sodium Hydroxide

Sodium hydroxide can be used as a hide wash intervention. Bosilevac et al. (2005) evaluated a 1.6% solution, followed by a chlorinated (1ppm) water rinse, in an on-line hide-wash cabinet. Results showed 2.1 and 3.4 log reductions in aerobic plate counts and *Enterobacteriaceae* counts respectively, and the prevalence of *E. coli* O157 was reduced from 44 to 17%.

The USA company Cargill Meat Solutions (formerly Excel Corp.) has implemented hide washing systems in all of their plants. Cargill’s choice of compounds to use in the automated hide wash cabinets involved consideration of cost, ease of implementation and efficacy. Sodium hydroxide at 1.5% was chosen as the wash because it does not lose activity, as acids often do, in a recirculating system using 1pp. chlorine. In addition, as the carcass exits the cabinet, plant personnel use a steam vacuum to remove excess liquid and loosened material along the hide opening pattern lines (Koohmaraie et al. 2005).
Proponent/Supplier Information

Klenzion Limited have developed a sheep washing system, called Agwash, and a sheep washing unit has been developed for this purpose by Windsor Kilns.

EcoLab supply a number of different chemicals.

EcoLab Australia

6 Hudson Avenue
Castle Hill 2154 NSW
Ph: 61-2-9680-5444
Website: http://www.ecolab.com

Klenzion Limited

PO Box 1207
Taupo
Ph: 64-7-377-3111
Fax: 64-7-378-9459
Michael Corkin (General Manager)
Mike@Klenzion.com

Windsor Kilns Pty Ltd

PO Box 704
Braeside
Victoria 3195
Ph: 61-3-9586-5799
Fax: 61-3-9580-7748
Vaughan Furniss (Australian Sales Manager)
Aust.sales@windsorgroup.com.au
References

